skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Briand, Lionel C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Feldt, Robert; Zimmermann, Thomas; Basili, Victor R; Briand, Lionel C (Ed.)
    Recent work has shown that Machine Learning (ML) programs are error-prone and called for contracts for ML code. Contracts, as in the design by contract methodology, help document APIs and aid API users in writing correct code. The question is: what kinds of contracts would provide the most help to API users? We are especially interested in what kinds of contracts help API users catch errors at earlier stages in the ML pipeline. We describe an empirical study of posts on Stack Overflow of the four most often-discussed ML libraries: TensorFlow, Scikit-learn, Keras, and PyTorch. For these libraries, our study extracted 413 informal (English) API specifications. We used these specifications to understand the following questions. What are the root causes and effects behind ML contract violations? Are there common patterns of ML contract violations? When does understanding ML contracts require an advanced level of ML software expertise? Could checking contracts at the API level help detect the violations in early ML pipeline stages? Our key findings are that the most commonly needed contracts for ML APIs are either checking constraints on single arguments of an API or on the order of API calls. The software engineering community could employ existing contract mining approaches to mine these contracts to promote an increased understanding of ML APIs. We also noted a need to combine behavioral and temporal contract mining approaches. We report on categories of required ML contracts, which may help designers of contract languages. 
    more » « less